Challenges in Adding Haptic Feedback to Surgical Robotics

Lawton Verner, PhD
Manager, Systems Analysis

Ryan Steger, PhD
Manager, Mechanical Engineering
The da Vinci Xi Surgical System
Evolution of MIS Technology

1999
- da Vinci®
 - Eliminates lap compromises
 - Simple instruments

2006
- da Vinci® S™
 - 3D HD Vision (720p)
 - Cross-quadrant access
 - Streamlined set-up

2009
- da Vinci® Si™
 - Dual Console option
 - Enhanced HD Vision (1080i)
 - Upgradable architecture

2014
- da Vinci® Xi™
 - Multi-quadrant access
 - Crystal clear 3D HD vision
 - Platform for future technologies

- FIREFLY™
- XI SKILLS SIMULATOR™
- INTEGRATED ENERGY
- VESSEL SEALER
- STAPLER
- FUTURE INNOVATION SINGLE PORT SURGERY

2015 IEEE World Haptics Conference: Workshop on “Cutaneous Feedback for Teleoperation in Medical Robotics”
Haptic feedback on the da Vinci system

• Through the masters
 • Mostly kinesthetic
 • Motor effort based – limited sensitivity
 • Workspace limit
 • Haptic UI features

• Through vision
 • Fantastic 3D stereoscopic magnified wide FOV image
 • Surgeons use visual cues to understand forces applied to tissues

• Sensitive haptic feedback (both kinesthetic and cutaneous) remains of interest to the company
First Surgical Console and Patient-side Manipulators (1996)

- Haptic feedback has always been of interest
Sensitive haptic feedback requires a sensor

- Accurate force estimation is extremely difficult in practice
 - Requires good model of manipulator dynamics

- Dynamic parameters of the manipulators and instruments will change over their product life
 - Friction, compliance, tension
 - Adaptive models must be proven to be robust!

- 2014 da Vinci instrument numbers:
 - >550,000 procedures
 - >100,000 instruments produced
Sensitive haptic feedback requires a sensor

- Measuring the signal directly is a must
Design constraints for medical sensor

- Regulatory
- Cleaning
- Reliability
- Usability
- Sterilization
- Reimbursement
- Size
- Servicing
- Patient value
- Design verification
- Cost
- Manufacturability
- Safety
- Biocompatibility
- Cautery
- Robustness
- Packaging
- Servicing
Force sensor requirements

• Placement
 • Nearer to the instrument tip the better

• Size
 • 8mm (or smaller) instrument shaft

• Cleanability
 • Hermetically sealed and/or “flushable”
 • Steam autoclaved (2 ATM, 134-138°C)

• Biocompatibility
 • Limited material options
 • Material re-testing can be required depending on material treatment
Safety is critical

- Failure mode analysis
 - What are the likely points of failure
 - What is the severity of those failures

- Fault detection
 - Sensor redundancy
 - System models
 - There are >2 million lines of embedded run-time code. Almost half of this code is related to safety and redundancy.
Testing is endless

- Software verification testing
 - A typical software verification will consist of ~40,000 test cases

- Load tests of most mechanical components
System robustness
Instrument robustness

Instrument abuse/misuse can occur at any stage…not just in the OR!
Design constraints for medical devices

- Regulatory
- Size
- Manufacturability
- Cleaning
- Servicing
- Safety
- Reliability
- Biocompatibility
- Patient value
- Design verification
- Cautery
- Usability
- Biocompatibility
- Sterilization
- Packaging
- Cost
- Robustness
- Reimbursement
- Servicing
Understanding patient value

\[\text{Patient Value} = \frac{\text{Efficacy}}{\text{Invasiveness}^2} \]
Finding the patient value for cutaneous feedback

- Find good clinical partners
 - Honest feedback on the clinical impact
 - Vision to look outside the box
 - Ability to overlook limitation of prototypes

- Clinical feedback
 - Evaluation with clinical partners early and often

- Keep an eye on the other design constraints
 - Don’t design yourself in a corner
Closing thoughts on cutaneous feedback for surgical telemanipulators

- Display devices
 - Same design constraints

- Cutaneous + kinesthetic devices

- Focus on the patient value

- Additional opportunities in improved training